1456=16t^2

Simple and best practice solution for 1456=16t^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1456=16t^2 equation:



1456=16t^2
We move all terms to the left:
1456-(16t^2)=0
a = -16; b = 0; c = +1456;
Δ = b2-4ac
Δ = 02-4·(-16)·1456
Δ = 93184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{93184}=\sqrt{1024*91}=\sqrt{1024}*\sqrt{91}=32\sqrt{91}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{91}}{2*-16}=\frac{0-32\sqrt{91}}{-32} =-\frac{32\sqrt{91}}{-32} =-\frac{\sqrt{91}}{-1} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{91}}{2*-16}=\frac{0+32\sqrt{91}}{-32} =\frac{32\sqrt{91}}{-32} =\frac{\sqrt{91}}{-1} $

See similar equations:

| 35-m=28 | | 15=p+13 | | x=10,3x+20 | | w=2+1/4 | | -5x+11+12x=74 | | -18-6x=6(1+8x) | | 6/7x+9=81/7 | | 3-2(3x+5)=24 | | -7=p-3/2 | | 12q=35 | | 56=2-6g | | -2/7x+1=7 | | m12=3 | | 80^2+x^2=100^2 | | 42x+x=6 | | 62+x=-8 | | 3^x=68 | | 3r=91/0 | | -5(m-93)=35 | | `-15-4m=1` | | 42x+6=7 | | 71/36=4/9-2x/7 | | 3/10(x+2))=12 | | 42x+6=36 | | 4b-18-7b=90 | | F(x)=6x^2-3x+7 | | x+(-19)=-20 | | 2(3x-4)+2x=40 | | w*4=9 | | -3x+15=(15-3x) | | -16y+8=0 | | (6+x)5+3=37 |

Equations solver categories